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Abstract. A global optimization method, QBB, for twice-differentiable NLPs (Non-Linear
Programming) is developed to operate within a branch-and-bound framework and require
the construction of a relaxed convex problem on the basis of the quadratic lower bound-
ing functions for the generic nonconvex structures. Within an exhaustive simplicial division
of the constrained region, the rigorous quadratic underestimation function is constructed
for the generic nonconvex function structure by virtue of the maximal eigenvalue analysis
of the interval Hessian matrix. Each valid lower bound of the NLP problem with the divi-
sion progress is computed by the convex programming of the relaxed optimization problem
obtained by preserving the convex or linear terms, replacing the concave term with linear
convex envelope, underestimating the special terms and the generic terms by using their
customized tight convex lower bounding functions or the valid quadratic lower bounding
functions, respectively. The standard convergence properties of the QBB algorithm for non-
convex global optimization problems are guaranteed. The preliminary computation studies
are presented in order to evaluate the algorithmic efficiency of the proposed QBB approach.
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1. Introduction

The vast majority of the chemical process design and control problems is
determined by the optimal solutions, however those problems are mainly
characterized by the existence of multiple minima and maxima, as well
as first, second, and higher order saddle points. Those nonconvex opti-
mization problems always frustrate the chemical engineers in their search
to arrive at better designs for novel or existing processes. These problems
arise in many sorts of engineering chemistry field, such as heat exchange
network design, chemical and phase equilibrium, and reaction-separation
sequencing. Despite the importance of identifying the global minimum
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solution or valid bound on that solution, this can rarely reached rig-
orously. Contributions from the chemical engineering community to the
area of global optimization can be traced to the work of Stephanopoulos
and Westerberg (1975), and Westerberg and Shah (1978). Renewed inter-
est in seeking global solution was motivated by the work of Floudas et
al. (1989). Thereofore, in the last decade we have experienced a resurgence
of interest in chemical engineering for new methods of global optimization
as well as the application of available global optimization algorithms to
important engineering field (Ryoo and Sahinidis, 1995, 1996, 2003; Gross-
mann, 1996; Sahinidis, 1996; Smith and Pantelides, 1999; Floudas, 2000;
Parthasarathy and El-Halwagi, 2000; Tawarmalani and Sahinidis, 2001,
2002, 2004; Zhu and Kuno, 2003). This recent surge of interest is attributed
to three main reasons. First, a large number of engineering chemistry and
computational chemistry problems are indeed global optimization problems
(Wales and Scheraga, 1999). Second, the existing local nonlinear optimiza-
tion approaches may fail to obtain even a feasible solution or are trapped
to a local optimum solution, which may differ in value significantly from
the global solution. Third, the global optimum solution may have a very
different physical interpretation when it is compared to local solution, the
chemical and phase equilibrium problem is a very real one since in equilib-
rium a local solution may provide incorrect prediction of types of phases
at equilibrium, as well as the compositions in each phase (McDonald and
Floudas, 1994; Zhu and Xu, 1999; Zhu and Inoue, 2001).

One of the major difficulties with global optimization problems is the
lack of practical criteria, which decide when a local solution is global.
Then, many iterative schemes (Horst and Tuy, 1990; Horst and Pardalos,
1995; Tuy, 1998) are developed which require some global information in
each step. The branch-and-bound framework is one of the most promis-
ing methods for solving multiextremal global optimization problems. The
main idea of this framework consists of two basic operations: successively
refined partitioning of the feasible region and estimation of lower and
upper bounds for the optimal value of the objective function over each
subset generated by the partitions. Most often, lower bounding procedures
are established using suitable types of underestimation of the functions
involved in the problem under consideration. As a result, lower bounds
are computed by solving relaxed problems in the same space of variables
as the original problems. In particular, the GOP algorithm for biconvex
problems (Floudas and Visweswaran, 1990, 1993) and the branch-and-
bound algorithm for bilinear problem (Al-Khayyal and Falk, 1983) rely on
mathematical properties specific to the problem solved to obtain a tight
lower bounding problem. Phillips et al. (1996) proposed a convex quadratic
function underestimator for general nonconvex function with numerous
local minima, which was fitted by using a set of distinct local minima of
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the nonconvex function computed by an unconstrained minimizer. Since
there is no any guarantee that such set contains all local minima and the
global minimum, then it is not a deterministic global underestimator. Flou-
das and his coworkers (Floudas, 2000) suggested an approach which neces-
sitates the identification of the minimum eigenvalues of the Hessian matrix
of the functions to be convexified over a rectangular domain. The αBB
algorithm, developed on the basis of this technique, converges with math-
ematical rigor for the class of twice-differentiable nonconvex programs.
Recently, in order to locate the global solutions of the nonconvex phase
stability analysis problems (Zhu and Xu, 1999; Zhu and Inoue, 2001),
a quadratic underestimation function based branch and bound algorithm
(QBB) is developed for twice-differentiable NLPs in terms of the simplicial
partition of the constrained region.

The determination of phase stability, i.e. whether or not a given mixture
will split into multiple phases, is a key step in any separation process. Its
results can facilitate the search for the true equilibrium solution if a postu-
lated solution is thermodynamically unstable with respect to perturbations
in any or all of the phases, which can be evaluated by minimizing the tan-
gent plane distance function (TPDF). Zhu and Xu (1999) developed a novel
branch and bound algorithm for TPDF described by UNIQUAC equation
on the basis of compact partition of the feasible region, where the separable
assumption is no longer needed for the construction of the valid underesti-
mation function. However, the nonconvexity is only caused by the concave
function in the D.C. (Difference of two Convex functions) formulation of
the TPDF. Further, QBB algorithm (Zhu and Inoue, 2001) is developed for
the minimization of the stability analysis problem on the basis of a rigor-
ous underestimator constructed by interval analysis, which is a method to
expand the application of the QBB algorithm from the special D.C. struc-
ture of the stability analysis problem described by UNIQUAC model to the
generic nonconvex function structure. However, a systematic investigation of
the QBB algorithm, especially its convergence proof, is indispensable so as
to show that it can converge asymptotically on the global solution to the
general twice-differentiable NLPs with theoretical guarantee. In this paper,
the relaxed convex programming problem is constructed based on the qua-
dratic underestimation function under a branch-and-bound framework. The
lower bound computed by solving this relaxed problem is monotonic with
the refined division of the optimal region. The algorithm convergences are
developed by virtue of the exhaustiveness of the simplicial bisection if the
QBB algorithm does not terminate after finite iterations since it generates
infinite sequences of feasible and/or infeasible points converging to one of
the optimal solutions.

The organization of this paper follows that Section 2 contributes to
the main development of the QBB algorithm and its convergence proof,
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while Section 3 presents the preliminary numerical experiments of the QBB
algorithm.

2. The QBB Global Optimization Algorithm

The nonconvex optimization problem can be formulated as

(P ) min
x

f (x)

s.t. gi(x)�0 i=1,2, . . . ,m
x∈S0⊂�n

where, f and gi belong to C2, the set of twice-differentiable functions, and
S0 is a simplex defined by

S0=
{

x∈�n : x=
n+1∑
i=1

λiVi , λi �0,

n+1∑
i=1

λi=1

}

where Vi ∈V⊂�n, i=1,2, . . . , n+1 are the n+1 vertices of the simplex S0,
and V is the set of its vertices. Note that functions f and gi may take some
simpler forms, such as linear. And if the equality constraint appears, it can
be transformed equivalently to two inequality constraints. Then the above
formulation does not lose the generality to be any twice-differentiable NLP.
And an initial simplex can be obtained by an outer approximation method
done only on the polyhedral constraints of this problem, which is intro-
duced in the latter section. Let Dg be a subset of �n defined by

Dg=
{
x∈�n : gi(x)�0, i=1,2, . . . ,m

}
.

In general, the set Dg is nonconvex and even disconnected. W assume
throughout the paper that Problem (P) has an optimal solution, unless oth-
erwise stated. For any nonconvex optimization problem, i.e. (P), the QBB
algorithm proposed in this paper belongs to a branch and bound scheme.
During each iteration of this framework, a branching step and a bounding
step must be finished simultaneously. Then, we start to develop this algo-
rithm with the basic operations needed in this scheme.

2.1. simplicial partition

For the branching procedure, the simplex S0 will be divided into refined
subregions by using the well-known simplicial partition often used in
global optimization algorithm. For such kind of branching, it is a simple
matter to check that for every i ∈ I , where I is the vertex set of S0, the
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points V1, . . . ,Vi−1,U,Vi+1, . . . ,Vn+1 are vertices of a simplex Si⊂S, S is
the current simplex, and that

(int Si)∩ (int Sj )=φ ∀j �= i; ∪
i∈I

Si=S.

Then, the simplexes Si , i ∈ I , form a subdivision of the simplex S via U.
Each Si will be referred to as a subsimplex of S. Clearly, this partition is
proper since it consists of at least two members if and only if U does not
coincide with any Vi . An important special case is the bisection where the
U is a point of the longest edge of the simplex S, for example U∈ [Vm,Vn],
i.e.

∥∥Vm−Vn
∥∥= max

i<j

i,j=1,...,n+1

{∥∥Vi−Vj
∥∥}

where ‖·‖ denotes any given norm in �n, and U= aVm + (1− a)Vn with
0<a �1/2. It should be noted here that a means the simplex V is divided
into two subsimplexes such that the ratio of the volume of the smaller sub-
simplex to that of S is equal to a. Zhu and Inoue (2001) used an exact
bisection method since the a is equal to 1/2. Obviously, in an infinite fil-
ter of simplexes S1⊃S2 . . .⊃Sk ⊃ . . . , the diameter of the simplex Sk, i.e.
δ(Sk), the length of the longest edge of Sk, will monotonically decrease. For
the convergence proofs of the branch and bound algorithm, the most use-
ful concept is the exhaustiveness of a partition process (Horst et al., 1995).
A nested subsequence of partition sets {Sj }, i.e. Sj ⊃ Sj+1, ∀j , is called
exhaustive if Sj shrinks to an unique point, i.e.,

∞∩
j=1

Sj ={x}

A partition process in a branch and bound algorithm is called exhaustive if
every nested subsequence of partition sets generated throughout the algo-
rithm is exhaustive. Konno et al. (1997) proved that the above mentioned
exact simplicial bisection is exhaustive since δ(Sk)→0 as k→+∞.

2.2. quadratic underestimation function for general nonconvex
structures

In the bounding step of a branch and bound algorithm, a lower bound is
always obtained by constructing a valid convex underestimation problem
for the original one appeared in the problem (P), and solving the relaxed
convex NLP to global optimality. For current simplex given by
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S=
{

x ∈�n :x=
n+1∑
i=1

λiVi , λi �0,

n+1∑
i=1

λi=1

}
(1)

where Vi ∈V⊂�n, i = 1,2, . . . , n+ 1 are the n+ 1 vertices of the current
simplex S, and V is the set of these vertices. Then, we intend to compute
a lower bound µ(S) of the objective function f on S∩Dg. In other words,
we compute a lower bound for the optimal value of the problem

(P(S)) min
x

f (x)

s.t. gi(x)�0 i=1,2, . . . ,m
x∈S⊂�n.

As mentioned above, f and gi are generic nonconvex functions belonging
to C2, then the main idea for computing a lower bound µ(S) is to con-
struct from Problem (P(S)) a convex problem by replacing all those non-
convex functions with their respective convex underestimation functions,
then solving the resulting relaxed convex problem. In order to reach this
purpose, we see the following definition.

DEFINITION 2.2.1. Given any nonconvex function f (x) : S→�,x ∈ S ⊆
�n belonging to C2, the following quadratic function is defined by:

F(x)=
n∑

i=1

aix2
i +

n∑
i=1

bixi+ c (2)

where, x∈S⊆�n and F(x)=f (x) holds at all vertices of S. ai ’s are non-
negative scalars and large enough such that F(x)�f (x),∀x∈S.

It is trivial to see that F(x) is convex since all quadratic coefficients, i.e.
ai ’s, are nonnegative. Then, the following theorem (Zhu and Inoue, 2001)
can be used to ensure that it is indeed a rigorous underestimator of f (x),
i.e. F(x)�f (x),∀x∈S.

THEOREM 2.2.1. F(x) defined by Definition 2.2.1 is a convex underestima-
tor of f (x) if the difference function between them, i.e. D(x)=F(x)−f (x),
is a convex function.

Proof. Suppose that x1 and x2 are two arbitrary points in the current
simplex S defined by Equation (1), then there exists 2(n + 1) real val-
ues, αi, βi ∈� satisfying 0 � αi, βi � 1,

∑n+1
i=1 αi = 1,

∑n+1
i=1 βi = 1, such that

x1=∑n+1
i=1 αiVi and x2=∑n+1

i=1 βiVi . Since D(x)=F(x)− f (x) is a convex
function, we have the following inequality according to the definition of the
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convex function:

D
(
λx1+ (1−λ)x2)�λD

(
x1)+ (1−λ)D

(
x2)

where, λ is an arbitrary real value, and 0 � λ � 1. Substituting the con-
vex combinations of x1 and x2 into the above equation, and by virtue of
Jensen’s inequality (Rockafellar, 1972) we have

D
(
λx1+ (1−λ)x2)�λD

(
n+1∑
i=1

αiVi

)
+ (1−λ)D

(
n+1∑
i=1

βiVi

)

�λ

n+1∑
i=1

αiD
(
Vi
)+ (1−λ)

n+1∑
i=1

βiD
(
Vi
)

since
∑n+1

i=1 αi=1 and
∑n+1

i=1 βi=1. According to Definition 2.2.1, we know
that F(x)=f (x) holds at all vertices of S, i.e. F(Vi)=f (Vi). Then D(Vi)=
0 at each vertex Vi , i=1, . . . , n+1. Following above inequality, we have:

D
(
λx1+ (1−λ)x2)�0.

Since x1 and x2 are two arbitrary points in simplex S, and 0�λ�1, then
x=λx1+ (1−λ)x2 is also an arbitrary point in this simplex, and D(x)�0.
Then, F(x)�f (x),∀x∈S. It means that F(x) is a rigorous underestimator
of the generic nonconvex function f (x) for any point x∈S.

It is well known that D(x) is convex if and only if its Hessian matrix
HD(x) is positive semi-definite in the current simplex. A useful convexity
condition is derived by noting that HD(x) is related directly to the Hessian
matrix Hf (x) of f (x),x∈S by the following equation:

HD (x)=2�−Hf (x)

where � is a diagonal matrix whose diagonal elements are ai ’s defined in
Definition 2.2.1. Analogous to “diagonal shift matrix” defined by Adjiman
et al. (1998a), � here is refereed to as the diagonal underestimation matrix,
since these parameters guarantee that F(x) defined by Equation (2) is a rig-
orous underestimator of the generic nonconvex function f (x). Evidently,
the following Theorem will help to guarantee that D(x), as defined in The-
orem 2.2.1, is convex

THEOREM 2.2.2. D(x), as defined in Theorem 2.2.1, is convex if and only
if 2�−Hf (x)=2 diag(ai)−Hf (x) is positive semi-definite for all x∈S.
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In order to simplify the parameter calculation, the underestimator F(x)

is reformulated by using a single nonnegative a value, as following:

F (x)=a

n∑
i=1

x2
i +

n∑
i=1

bixi+ c. (3)

Then, all diagonal elements of the diagonal underestimation matrix � are
therefore equal to the uniform quadratic coefficient a defined by Equation
(3). On the basis of the Theorem 2.2.2, the following theorem (Zhu and
Inoue, 2001), derived similar to that done by Maranas and Floudas (1992)
and Adjiman et al. (1998), can then be used to ensure that F(x) defined by
Equation (2) or (3) is indeed a rigorous convex underestimator of f (x).

THEOREM 2.2.3. F(x) as defined by Equation (2) is a rigorous convex un-
derestimator of f (x) if and only if

ai �max

⎧⎨
⎩0,

1
2

max
x∈S

⎧⎨
⎩Hf

ii(x)+
∑
j �=i

∣∣∣Hf

ij (x)

∣∣∣
⎫⎬
⎭
⎫⎬
⎭ (4)

or, if F(x) is defined by Equation (3), we have

a �max
{

0,
1
2

max
i,x∈S

λi(x)

}
(5)

where the λi(x)’s are the eigenvalues of Hf (x), the Hessian matrix of the
generic nonconvex function f (x) for x∈S.

Proof. As Hf (x), the Hessian matrix of the generic nonconvex function
f (x), is symmetric, so that all its eigenvalues are real values. According to
Theorems 2.2.1 and 2.2.2, F(x) as defined by Equation (2) is a convex (or
linear) underestimator of f (x) if and only if D(x) defined in Theorem 2.2.1
is convex. D(x) is convex if for every x∈S , all eigenvalues λD

i (x) of D(x)

are nonnegative.
In the second case, since the uniform quadratic coefficient is used, the

eigenvalue of D (x) can be directly related to that of f (x). The above non-
negative condition, i.e., Equation (5), is equivalent with requiring the min-
imum eigenvalue of D (x) over x to be nonnegative

mini,x∈S λD
i (x)�0.
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After substituting λD
i (x) = 2a − λi(x) and a max{0, 1

2 maxi,x∈S λi(x)}, we
have

min
i,x∈S

λD
i (x)=min

i,x∈S
(2a−λi(x))

� min
i,x∈S

{
max{0,max

i,x∈S
λi(x)}−λi(x)

}

� min
i,x∈S

{
max
i,x∈S
{0, λi(x)}−λi(x)

}
.

Obviously, maxx∈S{0, λi(x)}−λi(x)�0 by considering the two cases for the
sign of λi(x), so minx∈S λD

i (x)�0, that is, D(x) is convex for x∈S. There-
fore, F(x) as defined by Equation (3) is a rigorous convex underestimator
of f (x).

In the first case, by virtue of Gerschgorin’s theorem (Gerschgorin, 1931),
the eigenvalue lower bound of a real symmetric matrix A= (aij ) is given as

min λi �min

⎛
⎝aii−

∑
j �=i

∣∣aij

∣∣
⎞
⎠

After substituting Equation (4) to HD(x)= 2�−Hf (x), its lower bound
can be given as

minx∈SλD
i (x)�min

x∈S

⎛
⎝2 max

⎧⎨
⎩0,

1
2

max
x∈S

⎧⎨
⎩Hf

ii (x)+
∑
j �=i

∣∣∣Hf

ij (x)

∣∣∣
⎫⎬
⎭
⎫⎬
⎭−Hf

ii (x)−
∑
j �=i

∣∣∣Hf

ij (x)

∣∣∣
⎞
⎠

�min
x∈S

⎛
⎝max

⎧⎨
⎩0,max

x∈S

⎧⎨
⎩Hf

ii (x)+
∑
j �=i

∣∣∣Hf

ij (x)

∣∣∣
⎫⎬
⎭
⎫⎬
⎭−

⎧⎨
⎩Hf

ii (x)+
∑
j �=i

∣∣∣Hf

ij (x)

∣∣∣
⎫⎬
⎭
⎞
⎠

�min
x∈S

⎛
⎝max

x∈S

⎧⎨
⎩0,

⎧⎨
⎩Hf

ii (x)+
∑
j �=i

∣∣∣Hf

ij (x)

∣∣∣
⎫⎬
⎭
⎫⎬
⎭−

⎧⎨
⎩Hf

ii (x)+
∑
j �=i

∣∣∣Hf

ij (x)

∣∣∣
⎫⎬
⎭
⎞
⎠ .

Obviously, minx∈S λD
i (x) � 0 by considering the two cases for the sign of

Hf

ii(x) +∑j �=i |Hf

ij (x)|. So D(x) is convex for x ∈ S. Therefore, F(x) as
defined by (2) is a rigorous convex underestimator of f (x).

The following proposition states the relationship between the linear and
constant coefficients of F(x) and its quadratic coefficients, and that the for-
mer ones can be determined uniquely by the latter and all vertices of the
current simplex.

PROPOSITION 2.2.1. The linear and constant coefficients of F(x) defined
by Equation (2) or (3), i.e. bi ’s and c can be given by the quadratic coeffi-
cients ai ’s known by Theorem 2.2.3 and the current simplex.
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Proof. In view of the Definition 2.2.1, we know F(x)=f (x) holds at all
vertices of S, then the following linear equation group can be obtained as:

VkT

�Vk+bT Vk+ c=f (Vk) k=1, . . . , n+1

where �∈�n×n is the diagonal underestimation matrix whose diagonal ele-
ments are the quadratic term coefficients, ai ’s defined in Equation (2) or
(3). b ∈�n is the linear coefficient vector whose elements are bi ’s defined
in Equation (2) or (3), and c is a scalar

bT Vk+ c=f (Vk)−VkT

�V k=1, . . . , n+1.

The vector b ∈ �n is augmented as (b, c) ∈ �n+1, in order to include the
scalar c. In the same way, the matrix V∈�(n+1)×n is augmented as (V,1)∈
�(n+1)×(n+1), where 1 is a column unity matrix of �n. (V,1)∈�(n+1)×(n+1) is
a regular square matrix since V∈�(n+1)×n is the coordinate matrix of the
simplex which is linearly independent. Then we have

(b, c)T = (V,1)−1 [f (V)−VT �V
]

where, [f (V)−VT �V]∈�n+1 is a column vector for the n+ 1 vertices of
the current simplex. By virtue of this equation, it is obvious that the lin-
ear and constant coefficients defined by Equation (2) or (3) are determined
uniquely by the quadratic coefficients and the current simplex.

By replacing all the nonconvex functions in Problem (P(S)) with their
corresponding quadratic function based convex underestimators described
by Equation (3), we have the following relaxed convex programming Prob-
lem (QP(S)):

(QP (S)) min
x

F(x)

s.t. Gi(x)�0 i=1,2, . . . ,m
x ∈S⊂�n

where,

F(x)=
n∑

i=1

a
f

i x2
i +

n∑
i=1

b
f

i xi+ cf

Gj (x)=
n∑

i=1

a
gj

i x2
i +

n∑
i=1

b
gj

i xi+ cgj j =1,2, . . . ,m.

Let DG be a subset of �n defined by

DG=
{
x ∈�n : Gi(x)�0, i=1,2, . . . ,m

}
.
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Obviously, the set DG is convex and compact. Then, the Problem (QP(S))
has an optimal solution according to the well-known Weierstrass Theorem.

It should be noted that only additional m+ 1 quadratic parameters, i.e.
af and agi for i=1,2, . . . ,m, are introduced during the above transforming
process if the uniform underestimation function is used, since all other lin-
ear and constant coefficients can be calculated by those quadratic param-
eters and the current simplex consequently. The following theorem states
that the optimal solution F ∗ of the convex programming Problem (QP(S))
is a valid lower bound of the primal Problem (P(S)).

THEOREM 2.2.4. For each simplex S = {x ∈ �n : x = ∑n+1
i=1 λiVi , λi �

0,
∑n+1

i=1 λi=1}⊆S0, a lower bound µ(S) of f over S∩Dg can be computed
by µ(S)=F ∗, where F ∗ is the optimal solution of F over S∩DG.

Proof. First, we show S∩Dg⊆S∩DG. Since Gi(x) is a convex underesti-
mator of gi(x), i.e. Gi(x)�gi(x), we have Gi(x)�gi(x)�0 for any x∈Dg,
then x∈DG. Finally we have S∩Dg⊆S∩DG by noting Dg⊆DG. Second,
by virtue of F(x)�f (x) for any x∈S∩Dg and S∩Dg⊆S∩DG, we have

F ∗ =min{F(x),x∈S∩DG}�F(x) for x∈S∩DG �f (x) for x∈S∩Dg.

It shows that µ(S)=F ∗ is a valid lower bound of f over S∩Dg.

The next proposition shows that the lower bound obtained by Theorem
2.2.4 is always bounded from below and has a monotonic property which
is useful within a branch and bound framework.

PROPOSITION 2.2.2.

(a) Let S1 and S2 be two simplexes satisfying S2⊂S1. Then, µ(S2)µ(S1).
(b) If Problem (P) has a feasible solution, then µ(S)>−∞ for each S⊆S0.

Proof. (a) Let F 1(x) and F 2(x) be the quadratic underestimation func-
tions of f (x) generated in S1 and S2 satisfying S2⊂S1, respectively. Then,
we will show F 1(x)�F 2(x) for x∈S2. According to Equation (2), we have

F 1(x)=
n∑

i=1

a1
i x

2
i +

n∑
i=1

b1
i xi+ c1

F 2(x)=
n∑

i=1

a2
i x

2
i +

n∑
i=1

b2
i xi+ c2.
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Then,

F 1(x)−F 2(x)=
n∑

i=1

(
a1

i −a2
i

)
x2

i +
n∑

i=1

(
b1

i −b2
i

)
xi+ c1− c2.

Since S2 ⊂ S1, then we have max x∈S1λi(x) � max x∈S2λi(x) and
max x∈S1

{
Hf

ii(x)+∑j �=i

∣∣Hf

ij (x)
∣∣}� max x∈S2

{
Hf

ii(x)+∑j �=i

∣∣Hf

ij (x)
∣∣}. By vir-

tue of Theorem 2.2.3, we have a1
i � a2

i . Then the difference function
DF (x)=F 1(x)−F 2(x) is convex.

Since F 1(x) is the underestimation function of f (x), then we have
F 1(x) � f (x) for all x ∈ S1. According to the Definition 2.2.1, we know
F 2(V2

i )=f (V2
i ) for all vertices of simplex S2, i.e. V2

i , for i=1,2, . . . ,n+1.
Since S2⊂S1, we have F 1(V2

i )�F 2(V2
i ) for i=1,2, . . . ,n+1. It means

D(V2
i )=F 1(V2

i )−F 2(V2
i )�0 i=1,2, . . . ,n+1.

For any x ∈ S2, and x=∑n
i=1 λiV2

i with λi � 0∀i and
∑n

i=1 λi = 1, by the
convex function characteristic of the difference functionD(x), we have

D(x)=D

(
n∑

i=1

λiV2
i

)
�

n∑
i=1

λiD(V2
i )�0.

Then, we obtain F 1(x)�F 2(x) for x∈S2.
By the same way, for x∈S2 we have

G1
i (x)�G2

i (x) for i=1,2, . . . ,m

Then, we have

D1
G={x∈�n :G1

i (x)�0, i=1, . . . ,m}∩S1⊇D2
G={x∈�n :G2

i (x)�0, i=1, . . . ,m}∩S2.

Since D2
G∩S2⊂D1

G∩S1, finally we have

µ(S2)=min{F 2(x) : x∈D2
G∩S2}�min{F 1(x) : x∈D1

G∩S1}=µ(S1)

(b) Since the problem is assumed to be feasible, then from (a), we need
only to show that µ(S0) >−∞. This bounded property follows from the
fact that the relaxed programming problem of Problem (P(S)) over the ini-
tial simplex S0, i.e. Problem (QP(S0)) is convex. Then, this problem has an
optimal solution, which implies that µ(S0)>−∞.
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2.3. upper bound

For a simplex S, if the function value of Problem (P(S)) is unbounded from
above, i.e. µ(S)=+∞, then it follows that:

f (x)=+∞ for all x ∈S.

In this case, the partition set S can be removed from further consideration.
Otherwise, one tries to find a set F(S) of feasible solutions in S and uses
it for computing an upper bound of the optimal value of Problem (QP(S)).
Throughout the algorithm, more and more feasible solutions can be found,
then the upper bound of the optimal value can be improved iteratively. A
set F(S) can be obtained by checking a finite set in S including, e.g. the
set of all vertices and the center of the simplex S, or some local solution
of the Problem (P) over S by any convex optimizer. If all of them are infea-
sible, the current upper bound has to be kept until the new feasible set is
found in the further iterations with new branches. It should be noted that
the assumption that a feasible point known a priori is not necessary for the
convergence of the algorithm, since a subsimplex S in which the solution
of QP(S) becomes feasible for P(S) can be found during the solution of the
problem.

2.4. rigorous calculation of the quadratic coefficients by using
interval analysis

For generic nonconvex functions, the elements of its Hessian matrix Hf (x)

are likely to be nonlinear and nonconvex functions of variables, so that
the derivation of the diagonal underestimation matrix, i.e. �, valid over the
entire simplex is a very challenging task. However, satisfying the convexity
condition of Theorem 2.2.2 is essential for the preservation of the guaran-
tee that F(x) defined by Equation (2) is a rigorous convex underestima-
tor of the generic nonconvex function f (x). The complexity arising from
the presence of the variables in the convexity condition can become tracta-
ble by using the transformation of the exact x-dependent Hessian matrix,
i.e. Hf (x), to an interval Hessian matrix [Hf (x)] (Neumaier, 1990, 1996;
Hansen, 1992; Kearfott, 1996; Adjiman et al., 1998a,b), such that Hf (x)⊆
[Hf ],∀x ∈ S. The current simplex S can be replaced with a more general
interval box, described by [xL,xU ]. xL and xU are the lower and upper
bounds of the current simplex, respectively. Obviously, S⊆ [xL,xU ]. Then
the interval Hessian matrix can be calculated in above interval box, which
will not affect the rigorousness of the estimation of the Hessian matrix,
Hf (x), in the current simplex. The elements of the original Hessian matrix,
i.e. Hf (x), are treated as independent when computing their general inter-
val boundaries according to the interval arithmetic. The following theorem
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similar to that described by Adjiman et al. (1998), will tell us how to use
the interval Hessian matrix family Hf (x) to calculate quadratic parameters
ai ’s defined by Equation (2).

THEOREM 2.4.1. Consider the generic nonconvex function f (x) with con-
tinuous second-order derivatives and its Hessian matrix Hf (x). Let D(x)=
F(x)− f (x) be defined in Theorem 2.2.1 and F(x) be defined by Equation
(2). Let [Hf ] be a symmetric interval matrix such that Hf (x)⊆ [Hf ],∀x∈S.
If the matrix [HD] defined by [HD]=2�− [Hf ]=2diag(ai)− [Hf ] is positive
semi-definite, then D(x) is convex over the current simplex encompassed by
[xL,xU ].

Since the interval Hessian matrix [Hf ]⊇Hf (x) is obvious, then a valid
upper bound of the maximum eigenvalue of [Hf (x)] can be more easily
computed by using the interval arithmetic. Then, Equation (5) derived in
Theorem 2.2.3 can be replaced with the following interval form, in order
to generate a single a value which satisfies the following sufficient condi-
tion so that F(x) is indeed a rigorous convex underestimator of f (x):

a �max
{

0,
1
2
λmax

([
Hf

])}
(6)

where, λmax([Hf ]) is the maximal eigenvalue of the interval matrix family
[Hf (x)]. For the non-uniform case, Equation (4) can be transformed into
the following equation by replacing the Hessian matrix with its interval
form, as

ai �max

⎧⎨
⎩0,

1
2

⎧⎨
⎩H̄f

ii+
∑
j �=i

∣∣Hf
∣∣
ij

⎫⎬
⎭
⎫⎬
⎭ (7)

where |Hf |ij = max{|Hf

ij |, |H̄f

ij |}. Obviously Equation (7) holds since for
interval matrix [Hf ], we have H̄f

ii +
∑

j �=i |Hf |ij � [Hf

ii ]+
∑

j �=i [H
f

ij ]. In the
following sections, some commonly used favorable function structures and
the generic nonconvex structure are analyzed in this interval way so as to
get the tight convex underestimations for them over the current simplex.

2.4.1. Extended Gerschgorin’s Theorem for Uniform Case

For a real symmetric matrix A= (aij ), the well-known Gerschgorin’s the-
orem (Gerschgorin, 1931) states that its eigenvalues are bounded, such as
λmax, by all its elements such that



A GLOBAL OPTIMIZATION METHOD 449

λmax=max
i

⎛
⎝aii+

∑
j �=i

∣∣aij

∣∣
⎞
⎠ .

In this paper, a straightforward extension of this theorem is presented for
interval matrices, similar to that done by Adjiman et al. (1998) for mini-
mum eigenvalue analysis, in the following theorem.

THEOREM 2.4.2. For an interval matrix [A]= (āij , āij ), an upper bound on
the maximum eigenvalue is given by

λmax=max
i

⎡
⎣āii+

∑
j �=i

max
(∣∣∣aij

∣∣∣ , ∣∣āij

∣∣)
⎤
⎦ .

Proof. By definition of the interval matrix, λmax([A])� maxA∈[A] λmax(A),
therefore

λmax([A])=max
A∈[A]

max
i

⎛
⎝aii+

∑
j �=i

∣∣aij

∣∣
⎞
⎠

=max
i

⎡
⎣max

A∈[A]
(aii)+max

A∈[A]

⎛
⎝∑

j �=i

∣∣aij

∣∣
⎞
⎠
⎤
⎦

=max
i

⎡
⎣āii+

∑
j �=i

max
(∣∣∣aij

∣∣∣ , ∣∣āij

∣∣)
⎤
⎦ .

Similar to that pointed out by Adjiman et al. (1998a) in their αBB algo-
rithm for the estimation of the minimum eigenvalue of an interval matrix,
above computational complexity is O(n2). The bound it can provide on
the eigenvalue is slightly loose since the uniform a value is used. How-
ever, it is still very effective if the problem scale is not too large. For the
practical applications, when the generic nonconvex function structures are
given in analytical form, their interval Hessian matrix can be obtained
by interval analysis, such as some widely used interval calculation pack-
ages, as INTLIB, a Portable FORTRAN77 Interval Standard Function
Library (Kearfott, 1996), and PROFIL, Programmer’s Runtime Optimized
Fast Interval Library in C/C++ (Knuppel, 1993).
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The method to estimate the lower bound of the minimum eigenvalue of
an interval matrix proposed by Adjiman et al. (1998a) is given by

λmin=min
i

⎡
⎣aii−

∑
j �=i

max
(∣∣∣aij

∣∣∣ , ∣∣∣āij

∣∣∣)
⎤
⎦ .

If the calculated λmin of the interval Hessian matrix [Hf ] of the non-
convex function structure f NC(x) is nonnegative, then it is certain that
f (x) is convex over the current simplex. So, the tightest underestimator,
or the convex envelope, of f (x) is itself, and it is used as the underes-
timator of f (x) over the current simplex. Otherwise, λmax of the interval
Hessian matrix [Hf ] of the nonconvex function structure f NC(x) is calcu-
lated according to Theorem 2.4.2, and the quadratic convex function based
underestimator is constructed by virtue of Theorem 2.2.3 and Proposition
2.2.1.

2.4.2. Underestimator for the Convex (Linear) Function Structure

For the convex (linear) function structures, denoted by f C(x) or f L(x),
obviously their convex envelopes are themselves. Then, they will preserve
their original forms in the final underestimators for the objection function
or the constraints.

2.4.3. Underestimator for the Concave Function Structure

For the concave function structure, denoted by f CA(x), whose eigenvalues
are all nonpositive, i.e. λi,x∈S(x) � 0. Then, the quadratic coefficient of its
underestimator defined by Equation (2) is zero according to the Theorem
2.2.3, so that the valid lower bound of the concave function structure over
the current simplex is a linear function whose linear and constant coeffi-
cients are given by Proposition 2.2.1. This conclusion is also completely
consistent with that presented by Horst et al. (1995, p.19). That is to say,
the valid bound constructed by Equation (2) is equivalent to the convex
envelope of the concave function over a simplex, which can be constructed
as an affine function given in the following proposition:

PROPOSITION 2.4.3. Let S be a simplex generated by the vertices V1,
V2, . . . ,Vn+1, i.e. S= {x ∈ �n : x=∑n+1

i=1 λiVi , λi � 0,
∑n+1

i=1 λi = 1
}
, and let

f CA(x) be a concave function defined on S. Then the convex envelope of
f CA(x) over S is the affine function LCA(x)=bT x+c which is uniquely deter-
mined by the system of linear equations f CA(Vi)= bT Vi + c for i = 1, . . . ,

n+1.
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2.4.4. Underestimator for the General Quadratic Function

The general quadratically-constrained quadratic programming plays an
important role in the engineering field. For an arbitrary bilinear function
structure, denoted by xixj and i �= j , McCormick (1976) and Al-Khayyal
and Falk (1983) presented the tightest convex lower bound, i.e. convex
envelope, over the rectangular domain [xL

i ,xU
i ]× [xL

j ,xU
j ]. Here a valid con-

vex underestimation function is easily derived for any general quadratic
function, since the eigenvalues of its Hessian matrix are known. The gen-
eral quadratic function is presented as

f (x)=xT Qx+qT x.

Obviously, the above bilinear structure is just a special case of this general
function. Since Hf (x)=Q, we have the diagonal underestimation matrix, �,
constructed on the basis of Theorem 2.2.3, as

a=maxi

{
0,

1
2
λ

Q
i

}

for the uniform case, or for the nonuniform case, we get

ai=max

⎧⎨
⎩0,

1
2

⎛
⎝Qii+

∑
j �=i

∣∣Qij

∣∣
⎞
⎠
⎫⎬
⎭ .

Then, we have the quadratic underestimation function as

F(x)=xT �x+bT x+ c

where, the linear and constant coefficients, i.e. (b, c), can be determined
uniquely by virtue of Proposition 2.2.1.

2.4.5. Comparison with the αBB Underestimator for General Nonconvex Function

For an arbitrary nonconvex function f ∈ C2 : [xL, xU ]→ �, a convex
lower bounding function L of f in αBB algorithm (Adjiman et al., 1998a;
Floudas, 2000) can be described as

L(x)=f (x)+
∑

i

αi(xi−xL
i )(xi−xU

i )

where, αi is a nonnegative parameter over rectangle [xL, xU ]. In order to
compare the underestimators generated by QBB method and αBB method
conveniently, we choose a simplex S and a rectangle [xL, xU ] which is the
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smallest one containing the former. The following proposition states that
the underestimator generated by QBB method for a nonconvex function f
is always tighter than or the same as that by the αBB method over a sub-
simplex where the uniform convexity or concavity of f can be judged by the
interval method.

PROPOSITION 2.4.4. If a function f can be shown to be convex or concave
over the current simplex, then the underestimator generated by QBB for f is
always the same as or tighter than that by the αBB method over that sim-
plex.

Proof. The feasibility of the simplicial partition stated in the above
assumption is based on Theorem 18.2 of Rockafellar (1972), so we can
compare the underestimators generated by QBB and αBB, respectively,
over each subsimplex. If f is judged by the interval method to be uniformly
convex over the subrectangle containing a subsimplex, then the parameters
αi ’s in αBB underestimator are obtained to be zero. So, the αBB under-
estimator over the subsimplex is f itself. By virtue of the statements made
in Section 2.4.1, the QBB underestimator for f is also f itself in this case,
so, the underestimators generated by QBB and αBB are the same as each
other. In the case that f is judged by the interval method to be uniformly
concave over a subsimplex, the QBB underestimator for f is the convex
envelope of f over the subsimplex by virtue of the Proposition 2.4.3. But,
the αBB underestimator for f is given by L(x)=f (x)+∑i αi(xi−xL

i )(xi−
xU

i ) which is a convex function and different from the convex envelope of f
over the subsimplex since the latter is always an affine function. Due to the
definition of the convex envelope, we have that the QBB underestimator is
tighter than that of the αBB in this case. Summarize the above two cases,
the underestimator generated by QBB method for f is always the same as
or tighter than that by the αBB method over each subsimplex.

Remarks

(1). When f is neither convex nor concave over a subsimplex, it is diffi-
cult to evaluate the qualities of the QBB underestimator and that of
αBB.

(2). The QBB algorithm calculates not only the quadratic coefficients,
where two eigenvalue calculations for the minimum and maximum
of the interval Hessian matrix are needed, but also the linear and
constant ones of its quadratic underestimator by solving a linear
system described by Proposition 2.2.1.

(3). When f itself is not used as the underestimator in the QBB algo-
rithm, a property of the QBB algorithm is that the quadratic
function based underestimator is always convex throughout the
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problem space, but the αBB algorithm can only guarantee the con-
vexity of its underestimator over the current rectangle [xL, xU ]. A
potential benefit of this property in terms of the algorithm in Sec-
tion 2.5 is that it allows the convex solver applied to get the solu-
tion to the underestimator to have feasible or infeasible convergence
path.

Geometrically speaking, αBB method uses a convex quadratic function
to compensate the concave parts of a general nonconvex function, but it
overestimates the convex parts simultaneously. The QBB algorithm uses
a convex quadratic function to approximate the convex part of a gen-
eral nonconvex function directly, which can bypass the concave parts and
avoid the above overestimation. However, it is difficult to compare the
algorithmic performances quantitatively for QBB and αBB methods based
on the remarks (1) and (2).

2.4.6. Generalized QBB Underestimator

It should be noted here, that the relaxed convex programming Problem
(QP(S)) contains not only the quadratic underestimation functions for the
generic nonconvex terms, but also the convex function terms which are not
necessarily transformed into the quadratic underestimators. Than, the final
underestimation strategy of the relaxed Problem (QP(S)) can be slightly
revised into the following convex programming formulation, as

(QP (S)′) min
x

F′(x)

s.t. G′i(x)�0 i=1,2, . . . ,m
x ∈S⊂�n

where,

F ′(x)=f L(x)+f C(x)+LCA
f (x)+FNC(x)

G′i(x)=gL
i (x)+gC

i (x)+LCA
gi

(x)+GNC
i (x) i=1,2, . . . ,m

and f L(x), f C(x), LCA
f (x), gL

i (x), gC
i (x), LCA

gi
(x) represent the linear terms,

convex terms, and the linear underestimation functions for the concave terms
in the objective function and the constraints, respectively. While FNC(x) and
GNC

i (x) represent the quadratic convex underestimation functions for the
generic nonconvex terms. Compared with the relaxed problem (QP(S)), the
relaxed problem (QP(S)′) contains not only quadratic function terms, but
also the generic convex terms of the original problem. But, it should be
noted here, such kind of relaxation does not affect the monotonicity of the
valid convex underestimators given in Proposition 2.2.2, so it will also keep
the algorithmic convergences presented in the following sections.
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2.5. steps of the global optimization algorithm qbb

At the start of this section, the Problem (P) is formulated over an initial
simplex S0. However, the practical problem does not necessarily provide
such simplex, then a convenient outer approximation method of obtaining
this simplex is presented here on a more broad basis, provided that the lin-
ear constrains can be separated from those with nonconvex terms, and the
lower and upper bounds of the independent variables are known a priori in
a physical way, as

(P ′) min
x

f (x)

s.t. gi(x)�0 i=1,2, . . . ,m
Ax−b �0
x �x � x̄

where, x and x̄ are the lower and upper bounds of x. The polyhedral
defined by the linear constraints are given as

P ={x∈�n,Ax−b �0
}
.

In order to incorporate the lower and upper bounds of the variables into
this polytope, the matrices A and b are expanded respectively as

∼
A=

⎛
⎝A

1
−1

⎞
⎠ and

∼
b=

⎛
⎝b

x̄
−x

⎞
⎠

where, 1 and −1 are diagonal matrices with 1 and −1 as the diagonal ele-
ments, respectively. Then, we get a polytope described as

∼
P =

{
x∈�n,

∼
A x−∼b �0

}
.

The following linear programming problems will help to produce an initial
simplex S0 as small as possible, as

µ0=max

{
n∑

i=1

xi ,x∈ ∼P
}

µi=min
{

xi ,x∈ ∼P
}

i=1, . . . , n.
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Then, all n+1 vertices of the initial simplex can be computed by

Vi=

⎛
⎜⎜⎝µ1, . . . ,µi−1,µ0−

n∑
j=1
j �=i

µj ,µi+1, . . . ,µn

⎞
⎟⎟⎠ i=1, . . . , n (8)

Vn+1= (µ1, . . . ,µn). (9)

Obviously we have
∼
P ⊆S0. Now, we are in a position to present the pro-

posed algorithm for solving Problem (P) by using the basic operations
described in previous sections.
Step 1 – Initialization. A convergence tolerance, εc, and a feasibility tol-
erance, εf , are selected and the iteration counter k is set to be zero.
The initial simplex S0 is computed by Equations (8) and (9), as S0 =
(V1,V2, . . . ,Vn+1), and the current variable bounds x and x̄ for the first
iteration are set to be equal to the solutions to the linear programming
problems, i.e. xi =min{xi ,x ∈ S0} and

∼
xi =max{xi ,x ∈ S0} for i = 1, . . . , n.

The global lower and upper bounds µ0 and γ0 of the global minimum of
Problem (P) are initialized and an initial current point xk,c is randomly
selected.
Step 2 – Local Solution of Problem (P) and Update of Upper Bound. The
nonconvex and nonlinear optimization Problem (P) is solved locally within
the current simplex S. If the solution f k

local of Problem (P) is εf -feasible,
the upper bound γk is updated as γk=min(γk, f

k
local).

Step 3 – Partitioning of Current Simplex. The current simplex, Sk, is parti-
tioned into the following two simplexes (r=1,2):

Sk,1=
(

Vk,0, . . . ,Vk,m, . . . ,
Vk,m+Vk,l

2
,Vk,n

)

Sk,2=
(

Vk,0, . . . ,
Vk,m+Vk,l

2
, . . . ,Vk,l,Vk,n

)

where, k,m and k, l correspond to the vertices with the longest edge in the
current simplex, i.e. (k,m), (k, l)=arg maxi<j {‖Vk,j −Vk,i‖}.
Step 4 – Update of ar

k,f , br
k,f , cr

k,f and ar
k,gi

, br
k,gi

, cr
k,gi

Inside Both Subsim-
plexes r = 1,2. The nonnegative parameters ar

k,f and ar
k,gi

of the general
nonconvex terms in the objective function and constraints are updated
inside both simplexes r = 1,2 according to the methods presented in
Section 2.4, and the corresponding linear and constant coefficients, i.e.
br

k,f , cr
k,f and br

k,gi
, cr

k,gi
, are renewed according to Proposition 2.2.1.

Step 5 – Solutions Inside both Subsimplexes r= 1,2. The convex program-
ming Problem (QP(S)′) is solved inside both subsimplexes (r=1,2) by using
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some convex nonlinear solver. If a solution F
k,r

sol is feasible and less than
the current upper bound, γk , then it is stored along with the solution point
xk,r

sol .
Step 6 – Update Iteration Counter k and Lower Bound µk. The iteration
counter increases by one,

k←k+1

and the lower bound µk is updated to the minimum solution over the
stored ones from the previous iterations. Furthermore, the selected solution
is erased from the stored set

µk=F
k′,r ′
sol

where, F
k′,r ′
sol =minr,I {F I,r

sol , r=1,2, I =1, . . . , k−1}. If the set I is empty, set
µk=γk and go to Step 8.
Step 7 – Update Current Point xk,c and current simplex Sk. The current
point is selected to be the solution point of the previously found minimum
solution in Step 6

xk,c=xI ′,r ′
sol

and the current simplex becomes the subsimplex containing the previously
found solution,

Sk=
(

Vk′,0, . . . ,Vk′,m, . . . ,
Vk′,m+Vk′,l

2
, . . . ,Vk′,n

)
if r ′ =1

Sk=
(

Vk′,0, . . . ,
Vk′,m+Vk′,l

2
, . . . ,Vk′,l, . . . ,Vk′,n

)
otherwise

Step 8 – Check for Convergence. If (γk −µk) > εc, then return to Step 2.
Otherwise, εc-convergence has been reached. The global minimum solution
and solution point are given as

f ∗←f c,k′′

x∗←xc,k′′

where, k′′ =argI

{
f c,I =γk

}
, I =1, . . . , k.

It should be noted that the current simplex can be deleted in Step 5
when either the Problem (QP(S)′) is infeasible or its solution is greater than
the current upper bound. The former is obvious since Problem (P) is infea-
sible too if the relaxed Problem (QP(S)′) is infeasible. The latter alterna-
tive is valid since the global minimum cannot appear in this simplex for
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the lower bound computed over this simplex is greater than the current
upper bound, which state only local minima or some saddle points can
exist there. The mathematical proof that the proposed global optimization
algorithm QBB converges to the global minimum is presented in the fol-
lowing section.

2.6. proof of convergence to the global minimum

If the QBB algorithm presented in above section terminates at iteration k,
then the point xk is an optimal solution of Problem (P). In the case that
the algorithm is not finite, it generates at least one infinite sequence of sim-
plexes {Sj } such that Sj+1 ⊂ Sj , for all j . The convergence of the QBB
algorithm is stated by means of the following results.

PROPOSITION 2.6.1. Assume that Problem (P) has a feasible solution.
Further, assume that the QBB algorithm generates an infinite subsequence of
simplexes {Sj } such that Sj+1⊂Sj , for all j , and limj→∞ Sj =∩∞j=1 Sj ={x∗}.
Then, x∗ is an optimal solution of Problem (P).

Proof. First, we show that the point x∗ is a feasible point of Problem (P).
To do this, for each j, let Vj stand for a vertex of simplex Sj . Further, for
each j, let (xj ) be an optimal solution of the relaxed convex programming
Problem (QP(S)) with S=Sj . It should be noted that (xj ) exists for each
j as shown in Proposition 2.2.2(b). Since the edges of the simplex Sj are
bounded and

lim
j→∞

Sj = ∞∩
j=1

Sj ={x∗} .

Then, we also have

lim
j→∞

Vj ={x∗} .

We can assume, by passing to subsequence if necessary, that xj→ x∗, as
j→∞. From this, we have

Gi(xj )→Gi(x∗)�0 for i=1, . . . ,m and j→∞.

Suppose that x∗ is not a feasible solution of Problem (P); that is to say,
there exists a number ε >0 and for some constraint k such that

gk(x∗)� ε >0.

Since x∗ is a vertex at the limit simplex, then according to Definition 2.2.1,
we have

gk(x∗)=Gk(x∗)� ε >0.



458 YUSHAN ZHU AND TAKAHITO KUNO

which implies that x∗ is not a feasible point to Problem (QP(P)). This con-
tradiction implies that x∗ is a feasible point of Problem (P).

Next, since µ(Sj+1)�µ(Sj )>−∞, for all j, by Proposition 2.2.2, there
exists a limit µ∗ of {µ(Sj )} bounded by the optimal value of Problem (P).
Moreover, in view of the QBB algorithm, we have

lim
j→∞

µ(Sj )= lim
j→∞

γ (Sj )�f (x∗)

which implies that x∗ is an optimal solution of Problem (P).

Note that the finite ε-convergence for this case could be obtained by
truncating the above infinite sequence at ε-tolerance between the upper and
lower bounds in the enumeration tree (Maranas and Floudas, 1994). We
observe that the accumulation point of the upper bound set also exists
because of the compactness of the initial simplex S0, and is an optimal
solution of the Problem (P), then Proposition 2.6.1 trivially leads to the fol-
lowing useful properties of the algorithm.

PROPOSITION 2.6.2. (a) Assume that Problem (P ) has a feasible solution,
and that the simplicial partition process of the QBB algorithm presented in
Section 2.1 is exhaustive, then the QBB algorithm has the following conver-
gence property: If the QBB algorithm generates an infinite subsequence of
simplexes {Sj } such that the upper bound set F(Sj ) �=φ for each j, then each
accumulation point of the corresponding subsequence {xj } is an optimal solu-
tion of the Problem (P ).
(b) The QBB algorithm terminates after finitely many iterations whenever the
feasible set of Problem (P ) is empty.

For the proof of (a), we can see that a subsequence of the upper bound
set exists with the limit as the optimal solution of the Problem (P). More-
over, if the QBB algorithm does not terminate after finitely many iterations,
it must generate a subsequence of points converging to an optimal solution
of Problem (P) by seeing the argument of Proposition 2.6.1. This contra-
diction implies that the QBB algorithm terminates finitely.

It is well known that the general nonconvex optimization problem is NP-
hard (Vavasis, 1991). Then, we can expect that some large problems are diffi-
cult for the QBB algorithm. However, this definitely does not mean that the
QBB algorithm is unable to solve the large problem in a reasonable amount
of time. As we have described in the QBB algorithmic steps, it is possible to
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obtain a good feasible solution and show this feasible solution is within a
specified tolerance of being optimal, especially for the problems with some
favorable structures. But, if we analyze the branch and bound tree structure
generated from the partition process, the finite upper bound on the total
number of required iterations for ε-convergence is exponential function of
the initial simplex and the global convergence tolerance.

3. Preliminary Computation Studies of QBB Algorithm

The computation studies of QBB algorithm for the chemical and phase
equilibrium (CPE) problems described by UNIQUAC or NRTL equations,
respectively, for liquid–liquid systems were presented formerly in Zhu and
Xu (1999) and Zhu and Inoue (2001). Owing to the space limitation, a typ-
ical nonconvex optimization problem consisting of a nonconvex quadratic
objective function subjected to six inequality constraints, which are all non-
convex quadratic functions, is applied to evaluate the algorithmic efficiency
of the QBB method. Since the quadratic coefficients of the underestimation
function constructed in this paper for any bilinear term are known a priori,
i.e. 0.5 or 0, so that we can use some quadratic coefficients of the under-
estimation functions for the bilinear terms which are rigorously valid but
appointed to be much greater than their accurate values obtained by the
strict eigenvalue analysis in order to check the complicated situations where
the accurate upper bound of the maximal eigenvalues of the interval Hessian
matrix is difficult to be determined by the analytical methods. The problem
is formulated underlying, where ten linear inequalities represent the upper
and lower bounds of the five variables. This problem is taken from Colville’s
collection (1970), also chosen by Floudas and Pardalos (1990) as a typical
test for the constrained global optimization problem.

Min

37.293239 x1+0.8356891 x1 x5+5.3578547 x2
3−40792.141

Subject to
−0.0022053 x3 x5+0.0056858 x2 x5+0.0006262 x1 x4−6.665593 �0
0.0022053 x3 x5−0.0056858 x2 x5−0.0006262 x1 x4−85.334407 �0

0.0071317 x2 x5+0.00218133 x2
3+0.0029955 x1 x2−29.48751 �0

−0.0071317 x2 x5−0.00218133 x2
3−0.0029955 x1 x2+9.48751 �0

0.0047026 x3 x5+0.0019085 x3 x4+0.0012547 x1 x3−15.699039 �0
−0.0047026 x3 x5−0.0019085 x3 x4−0.0012547 x1 x3+10.699039 �0

78 �x1 �102
33 �x2 �45
27 �x3 �45
27 �x4 �45
27 �x5 �45.
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The nonlinearities of the above problem arise from the bilinear terms
±xixj for i �= j , and −x2

i , in the cost and constrained functions. For the
latter bilinear term, since it belongs to the concave function structure, then
its convex envelope described in Proposition 2.4.3., i.e. an affine function
over the current simplex, can be easily constructed. For the former one, we
can see its Hessian matrix is constant, as

H=
[

0 1
1 0

]
or H=

[
0 −1
−1 0

]

whose, two eigenvalues are 1 and −1, respectively. According to the ana-
lyzes in Section 2.4.4 for the general quadratic function, we get the uniform
quadratic underestimation coefficient, i.e. a = 0.5. Consequently, the lin-
ear and constant coefficients of the quadratic underestimation function can
be computed by the Proposition 2.2.1 over the current simplex. After all
nonconvex bilinear terms are replaced by their quadratic underestimation
functions, the valid underestimation functions for the cost and constrained
functions of the above problem are obtained. Then, a relaxed convex pro-
gramming problem is obtained and solved by a convex optimizer in order
to locate a valid lower bound for the original problem, and the current
simplex can be described by

x=
6∑

i=1

λiVi

0�λi �1 i=1,2, . . . ,6. (10)

Note that six additional linear variables are introduced in Equation (10).
The convex NLP optimizer LSGRG2C (Smith and Lasdon, 1992; Lasdon,
2000) is used to solve each convex underestimation problem over the cur-
rent simplex, and a package cQBB is implemented in C language. For the
above generally quadratical programming problem, all the computational
runs by cQBB package were performed on a Pentium III/800 machine. In
this paper, all CPU seconds reported represent the total time taken to solve
the above problem with different valid quadratic coefficients by the pro-
posed algorithm, where the global convergence is 0.001 and the feasible
tolerance is 0.001. The initial simplex is generated by the outer approxi-
mation method on 10 linear inequality constraints representing the upper
and lower bounds of the five variables, presented as {78.0, 33.0, 27.0, 27.0,
27.0}, {168.0, 33.0, 27.0, 27.0, 27.0}, {78.0, 123.0, 27.0, 27.0, 27.0}, {78.0,
33.0, 117.0, 27.0, 27.0}, {78.0, 33.0, 27.0, 117.0, 27.0}, {78.0, 33.0, 27.0,
27.0, 117.0}. Obviously, this simplex is looser than the hypercube in the
original problem, i.e. {[78,102], [33,45], [27,45], [27,45], [27,45]}. The pre-
liminary calculation results are shown in Tables 1–3, where the quadratic
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Table I. Calculation results of QBB algorithm for Colville’s Problem when a=0.5

Variable Upper bound Upper Lower bound Lower Iteration Number of CPU time
xi bound bound number unfathomed (s)

solution solution subsimplexes

1 78.0 78.0
2 33.0 33.0
3 −30665.58848 29.99506 −30665.60118 29.99503 1090 0 20.59
4 45.0 45.0
5 36.77602 36.77601

Table II. Calculation results of QBB algorithm for Colville’s Problem when a=1.0

Variable Upper bound Upper Lower bound Lower Iteration Number of CPU time
xi bound bound number unfathomed (s)

solution solution subsimplexes

1 78.0 78.0
2 33.0 33.0
3 −30665.58848 29.99506 −30665.77273 29.99445 2078 0 42.21
4 45.0 45.0
5 36.77602 36.77628

coefficients of the underestimation function for any bilinear term ±xixj for
i �= j in the above problem are assigned to be 0.5, i.e. the accurate one,
1.0, and 2.0, respectively. It turns out that the CPU running time increases
and the solution quality deteriorates when the quadratic coefficients are
estimated loosely. However, the algorithmic convergence is guaranteed even
when the quadratic coefficients are assigned to be four times of the accu-
rate one, see in Table 3. It should be noted that the number of the unfath-
omed simplexes is zero irrespective of the assigned quadratic coefficients
for the underestimation function, since this constrained problem has only
one global solution and the infeasible subsimplexes and those containing
only local minima have been removed with the algorithm progress, see the
remarks stated in Section 2.5.

4. Conclusion

A QBB algorithm is developed to solve problems belonging to the broad
class of twice-differentiable NLPs. For any such problem, the ability to
generate progressively tighter convex lower bounding problems at each iter-
ation guarantees the convergence of this algorithm to within epsilon of the
global optimum solution under the exhaustive division framework of the
initial simplex. The different methods are presented for the construction
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Table III. Calculation results of QBB algorithm for Colville’s Problem when a=2.0

Variable Upper bound Upper Lower bound Lower Iteration Number of CPU time
xi bound bound number unfathomed (s)

solution solution subsimplexes

1 78.0 78.0
2 33.0 33.0
3 −30665.58848 29.99506 −30665.68263 29.99471 4472 0 96.05
4 45.0 45.0
5 36.77602 36.77646

of the convex valid underestimators for special function structures and the
general nonconvex function structures, where the maximal eigenvalue anal-
ysis of the interval Hessian matrix provides the rigorous guarantee for the
QBB algorithm to converge to the global solution. The convergence prop-
erties of this algorithm for the nonconvex problems are obtained, and the
preliminary calculation results for a general quadratic programming prob-
lem are reported to show the efficiency of the proposed algorithm for the
practical applications.
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